public.gif

Papers that our laboratory members contributed to as the first author or the equivalent.

bar
2024
  1. Watabe T, Yamahira S, Takakura K, Thumkeo D, Narumiya S, Matsuda M, Terai K.   
    Calcium transients trigger switch-like discharge of prostaglandin E2 in an extracellular signal-regulated kinase-dependent manner.
    eLife. 2024 Jan 26;12:RP86727. doi: 10.7554/eLife.86727.
  2. Hirashima T, Matsuda M.   
    ERK-mediated curvature feedback regulates branching morphogenesis in lung epithelial tissue.
    Curr Biol. 2024 Jan 9:S0960-9822(23)01749-9. doi: 10.1016/j.cub.2023.12.049. Online ahead of print.
2023
  1. Hirashima T, Hino N, Aoki K, Matsuda M.   
    Stretching the limits of extracellular signal-related kinase (ERK) signaling - Cell mechanosensing to ERK activation
    Curr Opin Cell Biol . 2023 Oct:84:102217. doi: 10.1016/j.ceb.2023.102217.
  2. Watabe T, Yamahira S, Matsuda M, Terai K.   
    Visual quantification of prostaglandin E2 discharge from a single cell.
    Cell Struct Funct. 2023 Oct 7. doi: 10.1247/csf.23047. Online ahead of print.
  3. Matsuda K, Hirayama D, Hino N, Kuno S, Sakaue-Sawano A, Miyawaki A, Matsuda M, Terai K.   
    日本語解説  
    Knockout of all ErbB-family genes delineates their roles in proliferation, survival, and migration.
    J Cell Sci., 2023 Jul 31;jcs.261199. doi: 10.1242/jcs.261199. Online ahead of print.
2022
  1. Hino N, Matsuda K, Jikko Y, Maryu G, Sakai K, Imamura R, Tsukiji S, Aoki K, Terai K, Hirashima T, Trepat X, Matsuda M.   
    日本語解説  
    A feedback loop between lamellipodial extension and HGF-ERK signaling specifies leader cells during collective cell migration.
    Dev Cell. 2022 Sep 26:S1534-5807(22)00633-5. doi: 10.1016/j.devcel.2022.09.003.
  2. Ichise H, Tsukamoto S, Hirashima T, Konishi Y, Oki C, Tsukiji S, Iwano S, Miyawaki A, Sumiyama K, Terai K, Matsuda M.   
    日本語解説   Synopsis
    Functional visualization of NK cell-mediated killing of metastatic single tumor cells.
    eLife. 2022 Feb 3;11:e76269. >doi: 10.7554/eLife.76269.
  3. Hirota K, Hirashima T, Horikawa K, Yasoda A, Matsuda M.
    C-type Natriuretic Peptide-induced PKA Activation Promotes Endochondral Bone Formation in Hypertrophic Chondrocytes.
    Endocrinology. 2022 Mar 1;163(3):bqac005. doi: 10.1210/endocr/bqac005. /li>
2021
  1. Ishii M, Tateya T, Matsuda M, Hirashima T.
    Stalling interkinetic nuclear migration in curved pseudostratified epithelium of developing cochlea.
    Royal Society Open Science 2021 Dec 8;8(12):211024. doi: 10.1098/rsos.211024.
  2. Tanaka, T., Konishi, Y., Ichise, H., Tsukiji, S., Matsuda, M., and Terai, K.
    A dual promoter system to monitor IFN-γ signaling in vivo at single-cell resolution.
    Cell Struct. Funct. 2021 Dec 22;46(2):103-111. doi: 10.1247/csf.21052.
  3. Lin, S., Hirayama, D., Maryu, G., Matsuda, K., Hino, N., Deguchi, E., Aoki, K., Iwamoto, R., Terai, K., and Matsuda, M.
    Redundant roles of EGFR ligands in the ERK activation waves during collective cell migration.
    Life Sci Alliance 2021 5 (1) e202101206 doi: 10.26508/lsa.202101206.
  4. He J, Yamamoto M, Sumiyama K, Konagaya Y, Terai K, Matsuda M, Sato S.
    Two-photon AMPK and ATP imaging reveals the bias between rods and cones in glycolysis utility.
    FASEB J. 2021 Sep;35(9):e21880. doi: 10.1096/fj.202101121R.
  5. Konishi Y, Ichise H, Watabe T, Oki C, Tsukiji S, Hamazaki Y, Murakawa Y, Takaori-Kondo A, Terai K, Matsuda M
    日本語解説
    Intravital imaging identifies the VEGF-TXA2 axis as a critical promoter of PGE2 secretion from tumor cells and immune evasion
    Cancer Res. 2021 Aug 1;81(15):4124-4132. doi: 10.1158/0008-5472.CAN-20-4245.
  6. Ishii M, Tateya T, Matsuda M, Hirashima T.
    日本語解説
    Retrograde ERK activation waves drive base-to-apex multicellular flow in murine cochlear duct morphogenesis.
    eLife. 2021 Mar 5;10:e61092. doi: 10.7554/eLife.61092.
  7. Imanishi A, Ichise H, Fan C, Nakagawa Y, Kuwahara K, Sumiyama K, Matsuda M, Terai K.
    日本語解説
    Visualization of spatially-controlled vasospasm by sympathetic nerve-mediated ROCK activation.
    Am J Pathol. 2021 Jan;191(1):194-203. doi: 10.1016/j.ajpath.2020.09.012.
2020
  1. Konagaya Y, Takakura K, Sogabe M, Bisaria A, Liu C, Meyer T, Sehara-Fujisawa A, Matsuda M, Terai K.
    Intravital imaging reveals cell cycle-dependent myogenic cell migration during muscle regeneration.
    Cell Cycle. 2020 Nov;19(22):3167-3181. doi: 10.1080/15384101.2020.1838779.
  2. Kinjo T, Watabe T, Kobachi K, Terai K, Matsuda M.
    Single-cell activation of the cAMP-signaling pathway in 3D tissues with FRET-assisted two-photon activation of bPAC.
    ACS Chem Biol. 2020 Nov 20;15(11):2848-2853. doi: 10.1021/acschembio.0c00333.
  3. Sato S, Yamashita T, Matsuda M.  
    日本語解説
    Rhodopsin-mediated light-off-induced protein kinase A activation in mouse rod photoreceptor cells.
    Proc Natl Acad Sci USA. 2020 https://doi.org/10.1073/pnas.2009164117
  4. Yoshida T, Matsuda M, Hirashima T.
    Incoherent feedforward regulation via Sox9 and ERK underpins mouse tracheal cartilage development.
    Front Cell Dev Biol. 2020 Oct 22;8:585640. doi: 10.3389/fcell.2020.585640.
  5. Boocock D, Hino N, Ruzickova N, Hirashima T, Hannezo E.  
    日本語解説
    Theory of mechanochemical patterning and optimal migration in cell monolayers.
    Nat Phys 2020 https://doi.org/10.1038/s41567-020-01037-7
  6. Kobachi K, Kuno S, Sato S, Sumiyama K, Matsuda M, Terai K  
    日本語解説
    Biliverdin reductase-A deficiency brighten and sensitize biliverdin-binding chromoproteins.
    Cell Struct Funct. 2020 June 25 https://doi.org/10.1247/csf.20010
  7. Hino N, Rossetti L, Marin-Llaurado A, Aoki K, Trepat X, Matsuda M, Hirashima T  
    日本語解説
    ERK-Mediated Mechanochemical Waves Direct Collective Cell Polarization.
    Dev Cell. 2020 June 3 https://doi.org/10.1016/j.devcel.2020.05.011
  8. Matsuda M, Terai K
    Experimental pathology by intravital microscopy and genetically encoded fluorescent biosensors.
    Pathol Int. 2020 April 8 https://doi.org/10.1111/pin.12925.
  9. Watabe T, Terai K, Sumiyama K, Matsuda M   
    日本語解説
    Booster, a Red-Shifted Genetically Encoded Forster Resonance Energy Transfer (FRET) Biosensor Compatible with Cyan Fluorescent Protein/Yellow Fluorescent Protein-Based FRET Biosensors and Blue Light-Responsive Optogenetic Tools.
    ACS Sens. 2020 Feb 26. doi: 10.1021/acssensors.9b01941. [Epub ahead of print]
    Plasmids are available from Addgene
2019
  1. Kinjo T, Terai K, Horita S, Nomura N, Sumiyama K, Togashi K, Iwata S, Matsuda, M.
    日本語解説
    FRET-assisted photoactivation of flavoproteins for in vivo two-photon optogenetics.
    Nat Methods. 2019 Oct;16(10):1029-1036. doi: 10.1038/s41592-019-0541-5.
  2. Terai K, Imanishi A, Li C, Matsuda M.
    Two decades of genetically encoded biosensors based on Forster resonance energy transfer.
    Cell Struct Funct. 2019 Nov 2;44(2):153-169. doi: 10.1247/csf.18035.
  3. Komatsubara AT, Goto Y, Kondo Y, Matsuda M, Aoki K.
    Single-cell quantification of the concentrations and dissociation constants of endogenous proteins.
    J Biol Chem. 2019 Apr 12;294(15):6062-6072. doi: 10.1074/jbc.RA119.007685.
  4. Hino N, Ichikawa T, Kimura Y, Matsuda M, Ueda K, Kioka N.    
    An amphipathic helix of vinexin α is necessary for a substrate stiffness-dependent conformational change in vinculin.
    J Cell Sci. 2019 Jan 21;132(2). pii: jcs217349. doi: 10.1242/jcs.217349.
2018
  1. Konishi Y, Terai K, Furuta Y, Kiyonari H, Abe T, Ueda Y, Kinashi T, Hamazaki Y, Takaori-Kondo A, Matsuda M.
    日本語解説
    Live-Cell FRET Imaging Reveals a Role of Extracellular Signal-Regulated Kinase Activity Dynamics in Thymocyte Motility.
    iScience. 2018 Nov 20;10:98-113. doi: 10.1016/j.isci.2018.11.025.
  2. Miura H, Kondo Y, Matsuda M, Aoki K.
    Cell-to-Cell Heterogeneity in p38-Mediated Cross-Inhibition of JNK Causes Stochastic Cell Death.
    Cell Rep. 2018 Sep 4;24(10):2658-2668. doi: 10.1016/j.celrep.2018.08.020.
  3. Muta Y, Matsuda M, Imajo M.
    Dynamic ERK signaling regulation in intestinal tumorigenesis. doi: 10.1080/23723556.2018.1506684
    Mol. Cell. Oncol. 2018, e1506684
  4. Sano T, Kobayashi T, Ogawa O, Matsuda M.
    日本語解説
    Gliding Basal Cell Migration of the Urothelium during Wound Healing.
    Am J Pathol. 2018 Aug 16. pii: S0002-9440(18)30326-2. doi: 10.1016/j.ajpath.2018.07.010.
  5. Imanishi A, Murata T, Sato M, Hotta K, Imayoshi I, Matsuda M, Terai K.
    日本語解説 2018年度CSF賞論文
    A novel morphological marker for the analysis of molecular activities at the single-cell level.
    Cell Struct Funct. 2018 44(2):153-169. doi: 10.1247/csf.18035.
  6. Komatsu N, Terai K, Imanishi A, Kamioka Y, Sumiyama K, Jin T, Okada Y, Nagai T, Matsuda M.
    日本語解説
    A platform of BRET-FRET hybrid biosensors for optogenetics, chemical screening, and in vivo imaging.
    Sci Rep. 2018 Jun 12;8(1):8984. doi: 10.1038/s41598-018-27174-x.
  7. Muta Y, Fujita Y, Sumiyama K, Sakurai A, Taketo MM, Chiba T, Seno H, Aoki K, Matsuda M, Imajo M.
    日本語解説
    Composite regulation of ERK activity dynamics underlying tumour-specific traits in the intestine.
    Nat Commun. 2018 Jun 5;9(1):2174. doi: 10.1038/s41467-018-04527-8.
  8. Maryu G, Miura H, Uda Y, Komatsubara TA, Matsuda M, Aoki K.
    Live-cell Imaging with Genetically Encoded Protein Kinase Activity Reporters.
    Cell Struct Funct. 2018. 43(1):61-74. doi: 10.1247/csf.18003
2017
  1. Konagaya Y, Terai K, Hirao Y, Takakura K, Imajo M, Kamioka Y, Sasaoka N, Kakizuka A, Sumiyama K, Asano T, Matsuda M.
    日本語解説
    A Highly Sensitive FRET Biosensor for AMPK Exhibits Heterogeneous AMPK Responses among Cells and Organs.
    Cell Rep. 2017. 21(9):2628-2638. doi: 10.1016/j.celrep.2017.10.113.
  2. Aoki K, Kondo Y, Naoki H, Hiratsuka T, Itoh RE, Matsuda M
    Propagating Wave of ERK Activation Orients Collective Cell Migration.
    Dev Cell. 2017 Nov 6;43(3):305-317.e5. doi: 10.1016/j.devcel.2017.10.016.
  3. Uda Y, Goto Y, Oda S, Kohchi T, Matsuda M, Aoki K.
    Efficient synthesis of phycocyanobilin in mammalian cells for optogenetic control of cell signaling.
    Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):11962-11967. doi: 10.1073/pnas.1707190114. Epub 2017 Oct 24
  4. Hiratsuka T, Sano T, Kato H, Komatsu N, Imajo M, Kamioka Y, Sumiyama K, Banno F, Miyata T, Matsuda M.
    Live imaging of extracellular signal-regulated kinase and protein kinase A activities during thrombus formation in mice expressing biosensors based on Forster resonance energy transfer.
    J Thromb Haemost. 2017 Jul;15(7):1487-1499. doi: 10.1111/jth.13723.
  5. Kamioka Y, Takakura K, Sumiyama K, Matsuda M.
    Intravital FRET imaging reveals osteopontin-mediated polymorphonuclear leukocyte activation by tumor cell emboli.
    Cancer Sci. 2017 Feb;108(2):226-235. doi: 10.1111/cas.13132.
  6. Li C, Imanishi A, Komatsu N, Terai K, Amano M, Kaibuchi K, Matsuda M.
    A FRET biosensor for ROCK based on a consensus substrate sequence identified by KISS technology.
    Cell Struct Funct. 2017 Jan 11;42(1):1-13. doi: 10.1247/csf.16016. Epub 2016 Nov 23.
2016
  1. Kawabata N, Matsuda M.
    Cell Density-Dependent Increase in Tyrosine-Monophosphorylated ERK2 in MDCK Cells Expressing Active Ras or Raf.
    PLoS One. 2016 Dec 9;11(12):e0167940. doi: 10.1371/journal.pone.0167940.
  2. Sano T, Kobayashi T, Negoro H, Sengiku A, Hiratsuka T, Kamioka Y, Liou LS, Ogawa O, Matsuda M.
    Intravital imaging of mouse urothelium reveals activation of extracellular signal-regulated kinase by stretch-induced intravesical release of ATP.
    Physiol Rep. 2016 Nov;4(21). pii: e13033. PMID: 27905300
  3. Candeias MM, Hagiwara M, Matsuda M.
    Cancer-specific mutations in p53 induce the translation of Δ160p53 promoting tumorigenesis.
    EMBO Rep. 2016 Nov;17(11):1542-1551.
  4. Okuchi Y, Imajo M, Mizuno R, Kamioka Y, Miyoshi H, Taketo MM, Nagayama S, Sakai Y, Matsuda M.
    Identification of Aging-Associated Gene Expression Signatures That Precede Intestinal Tumorigenesis.
    PLoS One. 2016 Sep 2;11(9):e0162300. doi: 10.1371/journal.pone.0162300.
  5. Yamauchi F, Kamioka Y, Yano T, Matsuda M.
    日本語解説
    In Vivo FRET Imaging of Tumor Endothelial Cells Highlights a Role of Low PKA Activity in Vascular Hyperpermeability.
    Cancer Res. 2016 Sep 15;76(18):5266-76. doi: 10.1158/0008-5472.CAN-15-3534
  6. Maryu G, Matsuda M, Aoki K.
    Multiplexed Fluorescence Imaging of ERK and Akt Activities and Cell-cycle Progression.
    Cell Struct Funct. 2016 Jul 22;41(2):81-92. doi: 10.1247/csf.1600
  7. Mizuno R, Kamioka Y, Sakai Y, Matsuda M.
    Visualization of Signaling Molecules During Neutrophil Recruitment in Transgenic Mice Expressing FRET Biosensors.
    Methods Mol Biol. 2016;1422:149-60. doi: 10.1007/978-1-4939-3603-8_14.
  8. Takaoka S, Kamioka Y, Takakura K, Baba A, Shime H, Seya T, Matsuda M.
    日本語解説
    Live imaging of TAK1 activation in Lewis lung carcinoma 3LL cells implanted into syngeneic mice and treated with polyI:C.
    Cancer Sci. 2016 May;107(5):644-52. doi: 10.1111/cas.12923.
2015
  1. Komatsu N, Fujita Y, Matsuda M, Aoki K.
    mTORC1 upregulation via ERK-dependent gene expression change confers intrinsic resistance to MEK inhibitors in oncogenic KRas-mutant cancer cells.
    Oncogene 2015 Nov 5;34(45):5607-16. doi: 10.1038/onc.2015.16.
  2. Komatsubara AT, Matsuda M, Aoki K.
    Quantitative analysis of recombination between YFP and CFP genes of FRET biosensors introduced by lentiviral or retroviral gene transfer.
    Sci Rep. 2015 Aug 20;5:13283. doi: 10.1038/srep13283.
  3. Goto A, Nakahara I, Yamaguchi T, Kamioka Y, Sumiyama K, Matsuda M, Nakanishi S, Funabiki K.
    Circuit-dependent striatal PKA and ERK signaling underlies rapid behavioral shift in mating reaction of male mice.
    Proc Natl. Acad. Sci. U.S.A. 2015 May 11. doi: 10.1073/pnas.1507121112.
  4. Hiratsuka T, Fujita Y, Naoki H, Aoki K, Kamioka Y, Matsuda M.
    日本語解説
    Intercellular propagation of extracellular signal-regulated kinase activation revealed by in vivo imaging of mouse epidermis.
    eLife 2015 Feb 10;4:e05178. doi: 10.7554/eLife.05178.
  5. Imajo M, Ebisuya M, Nishida E.
    Dual role of YAP and TAZ in renewal of the intestinal epithelium.
    Nature Cell Biol. 2015 Jan;17(1):7-19. doi: 10.1038/ncb3084.
2014
  1. Sadaie W, Harada Y, Matsuda M, Aoki K.
    Quantitative in vivo fluorescence cross-correlation analyses highlight the importance of competitive effects in the regulation of protein-protein interactions.
    Mol Cell Biol. 2014 Sep;34(17):3272-90.
  2. Fujita Y, Komatsu N, Matsuda M, Aoki K.
    日本語解説
    FRET-based quantitative analysis of feedforward and feedback loops in EGFR signaling and the sensitivity to molecular targeting drugs.
    FEBS J. 2014 May 21. doi: 10.1111/febs.12852.
  3. Mizuno R, Kamioka Y, Kabashima K, Imajo M, Sumiyama K, Nakasho E, Ito T, Hamazaki Y, Okuchi Y, Sakai Y, Kiyokawa E, Matsuda M.
    日本語解説
    In vivo imaging reveals PKA regulation of ERK activity during neutrophil recruitment to inflamed intestines.
    J Exp Med. 2014 May 19. doi: 10.1084/jem.20132112
  4. Kumagai Y, Naoki H, Nakasyo E, Kamioka Y, Kiyokawa E, Matsuda M.
    日本語解説
    Heterogeneity in ERK activity as visualized by in vivo FRET imaging of mammary tumor cells developed in MMTV-Neu mice.
    Oncogene 2014 Mar 17. doi: 10.1038/onc.2014.28.
  5. Yukinaga H, Shionyu C, Hirata E, Ui-Tei K, Nagashima T, Kondo S, Okada-Hatakeyama M, Naoki H, Matsuda M.
    日本語解説
    Slow fluctuation of Rac1 activity is associated with biological and transcriptional heterogeneity of glioma cells.
    J Cell Sci. 2014 PMID: 24522191
  6. Miura H, Matsuda M, Aoki K.
    Development of a FRET biosensor with high specificity for Akt.
    Cell Struct Funct. 2014 Jan 8;39(1):9-20
2013
  1. Aoki K, Kumagai Y, Sakurai A, Komatsu N, Fujita Y, Shionyu C, Matsuda M.
    日本語解説
    Stochastic ERK Activation Induced by Noise and Cell-to-Cell Propagation Regulates Cell Density-Dependent Proliferation.
    Mol Cell. 2013 Nov 21;52(4):529-40.
  2. Aoki K, Takahashi K, Kaizu K, Matsuda M.
    A Quantitative Model of ERK MAP Kinase Phosphorylation in Crowded Media.
    Sci Rep. 2013;3:1541.
  3. Goto A, Sumiyama K, Kamioka Y, Nakasyo E, Ito K, Iwasaki M, Enomoto H, Matsuda M.
    日本語解説
    GDNF and Endothelin 3 Regulate Migration of Enteric Neural Crest-Derived Cells via Protein Kinase A and Rac1.
    J Neurosci.2013;33(11):4901-4912.
  4. Aoki K, Kamioka Y, Matsuda M.
    Fluorescence resonance energy transfer imaging of cell signaling from in vitro to in vivo: Basis of biosensor construction, live imaging, and image processing.
    Dev Growth Differ. 2013 Feb 7.
  5. Mori Y, Yagi S, Sakurai A, Matsuda M, Kiyokawa E.
    Insufficient ability of Rac1b to perturb cystogenesis.
    Small GTPases. 2013;4(1):9-15.
2012
  1. Yagi S, Matsuda M, Kiyokawa E.
    Chimaerin suppresses rac1 activation at the apical membrane to maintain the cyst structure.
    PLoS One. 2012;7(12):e52258. doi: 10.1371/journal.pone.0052258. Epub 2012 Dec 20.
  2. Sakurai A, Matsuda M, Kiyokawa E.
    Activated ras protein accelerates cell cycle progression to perturb madin-darby canine kidney cystogenesis.
    J Biol Chem. 2012 Sep 14;287(38):31703-11.
  3. Hirata E, Yukinaga H, Kamioka Y, Arakawa Y, Miyamoto S, Okada T, Sahai E, Matsuda M.
    日本語解説
    In vivo fluorescence resonance energy transfer imaging reveals differential activation of Rho-family GTPases in glioblastoma cell invasion.
    J Cell Sci. 2012 Mar. 7; 125:858-868.
  4. Kunida K, Matsuda M, Aoki K.
    FRET imaging and statistical signal processing reveal positive and negative feedback loops regulating the morphology of randomly migrating HT-1080 cells.
    J Cell Sci. 2012 Feb 17; 125(10):2381-2392.
  5. Elfenbein A, Lanahan A, Zhou TX, Yamasaki A, Tkachenko E, Matsuda M, Simons M.
    Syndecan 4 regulates FGFR1 signaling in endothelial cells by directing macropinocytosis.
    Sci Signal. 2012 May 8;5(223):ra36.
  6. Kamioka Y, Sumiyama K, Mizuno R, Sakai Y, Hirata E, Kiyokawa E, Matsuda M.
    日本語解説 2012年度CSF賞論文
    Live Imaging of Protein Kinase Activities in Transgenic Mice Expressing FRET Biosensors.
    Cell Struct Funct. 2012 Jan 24; 37(1):65-73.
  7. Yagi S, Matsuda M, Kiyokawa E.
    Suppression of Rac1 activity at the apical membrane of MDCK cells is essential for cyst structure maintenance.
    EMBO Rep. 2012 Jan 20;10:2381-2392.
  8. Aoki K, Komatsu N, Hirata E, Kamioka Y, Matsuda M.
    Stable expression of FRET biosensors: A new light in cancer research.
    Cancer Sci. 2012 Apr; 103(4):614-619.
2011
  1. Komatsu N, Aoki K, Yamada M, Yukinaga H, Fujita Y, Kamioka Y, Matsuda M.
    Development of an optimized backbone of FRET biosensors for kinases and GTPases.
    Mol Biol Cell. 2011;22:4647-56.
  2. Aoki K, Yamada M, Kunida K, Yasuda S, Matsuda M.
    日本語解説
    Processive phosphorylation of ERK MAP kinase in mammalian cells.
    Proc Natl. Acad. Sci. U.S.A. 2011;108:12675-80.
  3. Goto A, Hoshino M, Matsuda M, Nakamura T.
    Phosphorylation of STEF/Tiam2 by protein kinase a is critical for Rac1 activation and neurite outgrowth in dibutyryl cAMP-treated PC12D cells.
    Mol Biol Cell. 2011;22:1780-90.
  4. Kumagai Y, Kamioka Y, Yagi S, Matsuda M, and Kiyokawa E.
    A genetically encoded FRET biosensor for two-photon excitation microscopy.
    Anal Biochem. 2011 15;413(2):192-9.
  5. Kiyokawa E, Aoki K, Nakamura T, Matsuda M.
    Spatiotemporal regulation of small GTPases as revealed by probes based on the principle of Forster Resonance Energy Transfer (FRET): Implications for signaling and pharmacology.
    Annu Rev Pharmacol Toxicol. 2011 Feb 10;51:337-58.
2010
  1. Nishioka T, Frohman A. M, Matsuda M, and Kiyokawa E.
    Heterogeneity of phosphatidic acid levels and distribution at the plasma membrane in living cells as visualized by a forster resonance energy transfer(fret) biosensor
    J Biol Chem. 2010 Nov 12;285(46):35979-87.
  2. Kamioka Y, Yasuda S, Fujita Y, Aoki K, and Matsuda M.
    Multiple decisive phosphorylation sites for the negative feedback regulation of SOS1 via ERK.
    J Biol Chem. 2010 Oct 22;285(43):33540-8.
  3. Yoshiki S, Matsunaga-Udagawa R, Aoki K, Kamioka Y, Kiyokawa E, and Matsuda M.
    Ras and Calcium Signaling Pathways Converge at Raf1 via the Shoc2 Scaffold Protein.
    Mol Biol Cell. 2010 Mar;21(6):1088-96.
  4. Matsunaga-Udagawa R, Fujita Y, Yoshiki S, Terai K, Kamioka Y, Kiyokawa E, Yugi K, Aoki K, and Matsuda M.
    The scaffold protein Shoc2/SUR-8 accelerates the interaction of Ras and Raf.
    J Biol Chem. 2010 Mar 5;285(10):7818-26.
2009
  1. Nakamura T, and Matsuda M.
    In vivo imaging of signal transduction cascades with probes based on Forster Resonance Energy Transfer (FRET).
    Curr Protoc Cell Biol. 2009 Dec;Chapter 14:Unit 14.10.
  2. Aoki K, and Matsuda M.
    Visualization of small GTPase activity with fluorescence resonance energy transfer-based biosensors.
    Nat Protoc. 2009;4(11):1623-31. Epub 2009 Oct 15.
  3. Elfenbein A, Rhodes JM, Meller J, Schwartz MA, Matsuda M, and Simons M.
    Suppression of RhoG activity is mediated by a syndecan 4-synectin-RhoGDI1 complex and is reversed by PKCalpha in a Rac1 activation pathway.
    J Cell Biol. 2009 Jul 13;186(1):75-83.
  4. Hirata E, Arakawa Y, Shirahata M, Yamaguchi M, Kishi Y, Okada T, Takahashi JA, Matsuda M, and Hashimoto N.
    Endogenous tenascin-C enhances glioblastoma invasion with reactive change of surrounding brain tissue.
    Cancer Sci. 2009 Aug;100(8):1451-9.
  5. Kiyokawa E, and Matsuda M.
    Regulation of focal adhesion and cell migration by ANKRD28-DOCK180 interaction.
    Cell Adh Migr. 2009 Jul-Sep;3(3):281-4.
  6. Lu A, Tebar F, Alvarez-Moya B, Lopez-Alcala C, Calvo M, Enrich C, Agell N, Nakamura T, Matsuda M, and Bachs O.
    A clathrin-dependent pathway leads to KRas signaling on late endosomes en route to lysosomes.
    J.Cell Biol. 2009 Mar 23;184(6):863-79
  7. Tachibana M, Kiyokawa E, Hara S, Iemura SI, Natsume T, Manabe T, and Matsuda M.
    Ankyrin repeat domain 28 (ANKRD28), a novel binding partner of DOCK180, promotes cell migration by regulating focal adhesion formation.
    Exp Cell Res. 2009 Mar 10;315(5):863-76
2008
  1. Nakamura T, Aoki K, and Matsuda M.
    FRET imaging and in silico simulation: analysis of the signaling network of nerve growth factor-induced neuritogenesis.
    Brain Cell Biol. 2008 Aug;36(1-4):19-30
  2. Aoki K, Kiyokawa E, Nakamura T, and Matsuda M.
    Visualization of growth signal transduction cascades in living cells with genetically encoded probes based on Forster resonance energy transfer.
    Philos Trans R Soc Lond B Biol Sci. 2008 Jun 27;363(1500):2143-51
  3. Hara S, Kiyokawa E, Iemura S, Natsume T, Wassmer T, Cullen PJ, Hiai H, and Matsuda M.
    The DHR1 domain of DOCK180 binds to SNX5 and regulates cation-independent mannose 6-phosphate receptor transport.
    Mol Biol Cell. 19:3823-3835, 2008.
  4. Nishioka T, Aoki K, Hikake K, Yoshizaki H, Kiyokawa E, and Matsuda M.
    Rapid Turnover Rate of Phosphoinositides at the Front of Migrating MDCK Cells.
    Mol Biol Cell. 2008 19:4213-4223
  5. Itoh RE, Kiyokawa E, Aoki K, Nishioka T, Akiyama T, and Matsuda M.
    Phosphorylation and activation of the Rac1 and Cdc42 GEF Asef in A431 cells stimulated by EGF.
    J.Cell Sci. 2008 Aug 15;121(Pt 16):2635-42
  6. Kitano M, Nakaya M, Nakamura T, Nagata S, and Matsuda M.
    日本語解説
    Imaging of Rab5 activity identifies essential regulators for phagosome maturation.
    Nature. 2008 May 8;453(7192):241-5
2007
  1. Aoki K, Nakamura T, Inoue T, Meyer T, and Matsuda M.
    An essential role for the SHIP2-dependent negative feedback loop in neuritogenesis of NGF-stimulated PC12 cells.
    J.Cell Biol. 2007 Jun 4;177(5):817-27
  2. Takaya A, Kamio T, Masuda M, Mochizuki N, Sawa H, Sato M, Nagashima K, Mizutani A, Matsuno A, Kiyokawa E, and Matsuda M.
    R-Ras Regulates Exocytosis by Rgl2/Rlf-mediated Activation of RalA on Endosomes.
    Mol Biol Cell. 2007 May;18(5):1850-60
  3. Yoshizaki H, Mochizuki N, Goto Y, and Matsuda M.
    Akt-PDK1 Complex Mediates EGF-induced Membrane Protrusion through Ral Activation.
    Mol Biol Cell. 2007 Jan;18(1):119-28
2006
  1. Kawase K, Nakamura T, Takaya A, Aoki K, Namikawa K, Kiyama H, Inagaki S, Takemoto H, Saltiel AR, and Matsuda M.
    日本語解説
    GTP Hydrolysis of a Rho-family GTPase TC10 promotes exocytic vesicle fusion.
    Dev Cell. 2006 Sep;11(3):411-21
  2. K. Terai and Matsuda M.
    The amino-terminal B-Raf-specific region mediates calcium-dependent homo- and hetero-dimerization of Raf.
    EMBO J. 2006 Aug 9;25(15):3556-64. Epub 2006 Jul 20.
  3. Nakamura T, Kurokawa K, Kiyokawa E, and Matsuda M.
    Analysis of the spatiotemporal activation of rho GTPases using Raichu probes.
    Methods Enzymol. 2006;406:315-32.
  4. Fujioka A, Terai K, Itoh RE, Aoki K, Nakamura T, Kuroda S, Nishida E, and Matsuda M.
    Dynamics of the RAS/ERK map kinase cascade as monitored by fluorescence probes.
    J Biol Chem. 2006 Mar 31;281(13):8917-26. Epub 2006 Jan 17.
  5. Yoshizaki H, Aoki K, Nakamura T, and Matsuda M.
    Regulation of RalA GTPase by phosphatidylinositol 3-kinase as visualized by FRET probes.
    Biochem Soc Trans. 2006 Oct;34(Pt 5):851-4
  6. Kiyokawa E, Hara S, Nakamura T, and Matsuda M.
    Fluorescence (Forster) resonance energy transfer imaging of oncogene activity in living cells.
    Cancer Sci. 2006 Jan;97(1):8-15. Review
2005
  1. Nakamura T, Aoki K, and Matsuda M.
    Monitoring spatio-temporal regulation of Ras and Rho GTPases with GFP-based FRET probes.
    Methods. 2005 Oct;37(2):146-53.
  2. Nakamura T, Aoki K, and Matsuda M.
    FRET imaging in nerve growth cones reveals a high level of RhoA activity within the peripheral domain.
    Brain Res Mol Brain Res. 2005 Oct 3;139(2):277-87.
  3. Kurokawa K, and Matsuda M.
    Localized RhoA Activation as a Requirement for the Induction of Membrane Ruffling.
    Mol Biol Cell. 2005 Sep;16(9):4294-303.
  4. Itoh RE, Kurokawa K, Fujioka A, Sharma A, Mayer BJ, and Matsuda M.
    A FRET-based probe for epidermal growth factor receptor bound non-covalently to a pair of synthetic amphipathic helixes.
    Exp Cell Res. 2005 Jul 1;307(1):142-52
  5. Aoki K, Nakamura T, Fujikawa K, and Matsuda M.
    Local PIP3 Accumulation Recruits Vav2 and Vav3 to Activate Rac1/Cdc42 and Initiate Neurite Outgrowth in Nerve Growth Factor-stimulated PC12 Cells.
    Mol Biol Cell. May;16(5):2207-17.
  6. Terai K, and Matsuda M.
    Ras binding opens c-Raf to expose the docking site for mitogen-activated protein kinase kinase.
    EMBO Rep. 2005 Mar;6(3):251-5.
2004
  1. Kurokawa K, Takaya A, Terai K, Fujioka A, and Matsuda M.
    Visualizing the signal transduction pathways in living cells with GFP-based FRET probes.
    Acta Histochemica et Cytochemica 2004, 34, 347-355.
  2. Yoshizaki H, Ohba Y, Parrini MC, Dulyaninova NG, Bresnick AR, Mochizuki N, and Matsuda M.
    Cell type-specific regulation of RhoA activity during cytokinesis.
    J Biol Chem. 2004 Oct 22;279(43):44756-62.
  3. Takaya A, Ohba Y, Kurokawa K, and Matsuda M.
    RalA Activation at Nascent Lamellipodia of EGF-stimulated Cos7 cells and Migrating MDCK Cells.
    Mol Biol Cell. 2004 Jun;15(6):2549-57
  4. Kurokawa K, Itoh RE, Yoshizaki H, Nakamura T, and Matsuda M.
    Coactivation of Rac1 and Cdc42 at lamellipodia and membrane ruffles induced by epidermal growth factor.
    Mol Biol Cell. 2004 Mar;15(3):1003-10.
  5. Aoki K, Nakamura T, and Matsuda M.
    Spatio-temporal regulation of Rac1 and Cdc42 activity during nerve growth factor-induced neurite outgrowth in PC12 cells.
    J Biol Chem. 2004 Jan 2;279(1):713-9.
2003
  1. Yoshizaki H, Ohba Y, Kurokawa K, Itoh RE, Nakamura T, Mochizuki N, Nagashima K, and Matsuda M.
    Activity of Rho-family GTPases during cell division as visualized with FRET-based probes.
    J.Cell Biol. 162:223-232, 2003.
  2. Ohba Y, Kurokawa K, and Matsuda M.
    Mechanism of the spatio-temporal regulation of Ras and Rap1.
    EMBO J. 22:859-869.2003.
2002
  1. Itoh RE, Kurokawa K, Ohba Y, Yoshizaki H, Mochizuki N, and Matsuda M.
    Activation of Rac and Cdc42 video-imaged by FRET-based single-molecule probes in the membrane of living cells.
    Mol. Cell. Biol. 22:6582-6591.2002
  2. Tobiume M, Takahoko M, Yamada T, Tatsumi M, Iwamoto A, and Matsuda M.
    Inefficient enhancement of viral infectivity and CD4 downregulation by HIV-1 Nef from Japanese long-term nonprogressors.
    J. Virol. 76:5959-5965.2002
2001
  1. Kurokawa K, Mochizuki N, Ohba Y, Mizuno H, Miyawaki A, and Matsuda M.
    A Pair of FRET-based Probes for Tyrosine Phosphorylation of the CrkII Adaptor Protein in Vivo.
    J.Biol.Chem., 276:31305-31310, 2001
  2. Tobiume M, Takahoko M, Tatsumi M, and Matsuda M.
    Establishment of a MAGI-derived indicator cell line that detects the Nef enhancement of HIV-1 infectivity with high sensitivity.
    J.Virol.Method, 97:151-158, 2001
  3. Mochizuki N, Yamashita S, Kurokawa K, Ohba Y, Nagai T, Miyawaki A, and Matsuda M.
    Spacio-temporal images of growth factor-induced activation of Ras and Rap1.
    Nature 411:1065-1068, 2001
  4. Ohba Y, Ikuta K, Ogura A, Matsuda J, Mochizuki N, Nagashima K, Kurokawa K, Mayer BJ, Maki K, Miyazaki J, and Matsuda M.
    Requirement of C3G-dependent Rap1 activation for cell adhesion and embryogenesis.
    EMBO J., 20:3333-3341, 2001
  5. Tobiume M, Tokunaga K, Kiyokawa E, Takahoko M, Mochizuki N, Tatsumi M, and Matsuda M.
    Requirement of Nef for HIV-1 infectivity is biased by the expression levels of Env in the virus-producing cells and CD4 in the target cells.
    Arch.Virol. 146:1739-1751, 2001
2000
  1. Yamashita S, Mochizuki N, Ohba Y, Tobiume M, Okada Y, Sawa H, Nagashima K, and Matsuda M.
    CalDAG-GEFIII activation of Ras, R-Ras, and Rap1.
    J Biol Chem 275:25488-25493, 2000
  2. Ohba Y, Mochizuki N, Matsuo K, Yamashita S, Nakaya M, Hashimoto Y, Hamaguchi M, Kurata T, Nagashima K, and Matsuda M.
    Rap2 as a Slowly Responding Molecular Switch in the Rap1 Signaling Cascade.
    Mol Cell Biol 20:6074-6083, 2000
  3. Ohba Y, Mochizuki N, Yamashita S, Chan AM, Schrader JW, Hattori S, Nagashima K, and Matsuda M.
    Regulatory proteins of R-Ras, TC21/R-Ras2, and M-Ras/R-Ras3.
    J Biol Chem 275:20020-20026, 2000
  4. Mochizuki N, Ohba Y, Kobayashi S, Otsuka N, Graybiel A. M. Tanaka S, and Matsuda M.
    Crk Activation of JNK via C3G and R-Ras.
    J Biol Chem 275:12667-12671, 2000
1999
  1. Nishihara H, Kobayashi S, Hashimoto Y, Ohba F, Mochizuki N, Kurata T, Nagashima K, and Matsuda M.
    Non-adherent cell-specific expression of DOCK2, a member of the human CDM-family proteins.
    Biochim Biophys Acta 1452:179-187, 1999
  2. Mochizuki N, Ohba Y, Kiyokawa E, Kurata T, Murakami Y, Ozaki Y, Kitabatake A, Nagashima K, and Matsuda M.
    Activation of ERK/MAPK pathway by an isoform of rap1GAP associated with Gai.
    Nature (London) 400:891-894, 1999
  3. Ichiba T, Hashimoto Y, Nakaya M, Kuraishi Y, Tanaka S, Kurata T, Mochizuki N, and Matsuda M.
    Activation of C3G guanine nucleotide exchange factor for Rap1 by phosphorylation of tyrosine 504.
    J Biol Chem 274:14376-14381, 1999
1998
  1. Kiyokawa E, Hashimoto Y, Kobayashi S, Sugimura H, Kurata T, and Matsuda M.
    Activation of Rac1 by a Crk SH3-binding protein, DOCK180.
    Genes Dev 12:3331-3336, 1998
  2. Kiyokawa E, Hashimoto Y, Kurata T, Sugimura H, and Matsuda M.
    Evidence that DOCK180 up-regulates signals from the CrkII-p130Cas complex.
    J Biol Chem 273:24479-24484, 1998
  3. Hashimoto Y, Katayama H, Kiyokawa E, Ota S, Kurata T, Gotoh N, Shibata M, Otsuka N, and Matsuda M.
    Phosphorylation of CrkII adaptor protein at Tyrosine 221 by epidermal growth factor receptor.
    J Biol Chem 273:17186-17191, 1998
  4. Ota S, Kizaka-Kondoh S, Hashimoto Y, Nishihara H, Nagashima K, Kurata T, Okayama H, and Matsuda M.
    Constitutive association of EGF receptor with the CrkII-23 mutant that inhibits transformation of NRK cells by EGF and TGF-b.
    Cell Signal 10:283-290, 1998
  5. Tokunaga K, Kiyokawa E, Otsuka N, Kojima A, Kurata T, and Matsuda M.
    Inhibition of human immunodeficiency virus type 1 virion entry by dominant-negative Hck.
    J Virol 72:6257-6259, 1998
1997
  1. Kiyokawa E, Mochizuki N, Kurata T, and Matsuda M.
    Role of Crk oncogene product in physiologic signaling.
    Crit Rev Oncog 8:329-342, 1997
  2. Ichiba T, Kuraishi Y, Sakai O, Nagata S, Groffen J, Kurata T, Hattori S, and Matsuda M.
    Enhancement of guanine-nucleotide exchange activity of C3G for Rap1 by the expression of Crk, CrkL, and Grb2.
    J Biol Chem 272:22215-22220, 1997
1996
  1. Takai S, Hasegawa H, Kiyokawa E, Yamada K, Kurata T, and Matsuda M.
    Chromosomal mapping of the gene encoding DOCK180, a major Crk-binding protein, to 10q26.13-q26.3 by fluorescence in situ hybridization.
    Genomics 35:403-404, 1996
  2. Hasegawa H, Kiyokawa E, Tanaka S, Nagashima K, Gotoh N, Shibuya M, Kurata T, and Matsuda M.
    DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane.
    Mol Cell Biol 16:1770-1776, 1996
1995
  1. Gotoh T, Hattori S, Nakamura S, Kitayama H, Noda M, Takai Y, Kaibuchi K, Matsui H, Hatase O, Takahashi H, Kurata T, and Matsuda M.
    Identification of Rap1 as a target for Crk SH3 domain-binding guanine nucleotide-releasing factor, C3G.
    Mol Cell Biol 15:6746-6753, 1995
1994
  1. Tanaka S, Morishita T, Hashimoto Y, Hattori S, Nakamura S, Takenawa T, Matuoka K, Shibuya M, Kurata T, Nagashima K, Matsuda M.
    C3G, a guanine nucleotide releasing protein, binds to the SH3 domains of CRK and ASH/GRB2.
    Proc Natl Acad Soc USA 91:3443-3447, 1994
  2. Matsuda M, Hashimoto Y, Muroya K, Hasegawa H, Kurata T, Tanaka S, Nakamura S, Hattori S.
    CRK binds to two guanine nucleotide-releasing proteins for the Ras family and modulates nerve growth factor-induced activation of Ras in PC12 cells.
    Mol Cell Biol 14:5495-5500, 1994.
1993
  1. Matsuda M, Nagata S, Tanaka S, Nagashima K, Kurata T.
    Structural requirement of the CRK SH2 region for the binding to phosphotyrosine-containing proteins: evidence from reactivity to monoclonal antibodies.
    J Biol Chem 268:4441-4446, 1993
  2. Shinohara T, Matsuda M, Cheng SH, Marshall J, Fujita M, Nagashima K.
    BK virus infection of the human urinary tract.
    J Med Virol 41:301-305, 1993
  3. Tanaka S, Hattori S, Kurata T, Nagashima K, Fukui Y, Nakamura S, Matsuda M.
    Both the SH2 and SH3 domains of human CRK protein are required for neuronal differentiation of PC12 cells.
    Mol Cell Biol 13:4409-4415, 1993
  4. Tanaka S, Matsuda M, Nagata S, Nagashima K, Kurata T, Shizawa Y, Fukui Y.
    Structure of 85 kDa subunit of human phosphatidylinositol 3- kinase analyzed by using monoclonal antibodies.
    Jap J Cancer Res 84:279-289, 1993
1992
  1. Matsuda M, Reichman CT, Hanafusa H.
    Biological and biochemical activity of v-Crk chimeras containing the SH2/SH3 regions of phosphatidylinositol-specific phospholipase-gamma and Src.
    J Virol 66:115-121, 1992
  2. Matsuda M, Tanaka S, Nagata S, Kojima A, Kurata T, Shibuya M.
    Two species of human CRK cDNA encode proteins with distinct biological activities.
    Mol Cell Biol 12:3482-3489, 1992
1991
  1. Matsuda M, Mayer BJ, Hanafusa H.
    Identification of domains of the v-crk oncogene product sufficient for association with phosphotyrosine-containing proteins.
    Mol Cell Biol 11:1607-1613, 1991
1990
  1. Matsuda M, Marshall CP, Hanafusa H.
    Purification of crk oncogene product, P47 gag-crk , from insect cells.
    J Biol Chem 265:12000-12004, 1990
  2. Matsuda M, Mayer BJ, Fukui Y, Hanafusa H.
    Binding of oncoprotein, P47 gag-crk, to a broad range of phosphotyrosine-containing proteins.
    Science 248:1537-1539, 1990
1987
  1. Matsuda M, Yasui K, Nagashima K, Mori W.
    Origin of the medulloblastoma experimentally induced by human polyomavirus JC.
    J Natl Cancer Inst 79:585-91, 1987
  2. Matsuda M, Jona M, Yasui K, Nagashima K.
    Genetic characterization of JC virus Tokyo-1 strain, a variant oncogenic in rodents.
    Virus Res 7:159-68, 1987
1984
  1. Matsuda M, Nagashima K.
    Cytoplasmic tubular inclusion in ganglioneuroma.
    Acta Neuropathol 64:81-4, 1984

bar

bth.gif