References
-
1. Giepmans, B.N., et al., The fluorescent toolbox for assessing protein location and function. Science, 2006. 312: p. 217-224.
-
2. Muller-Taubenberger, A. and K.I. Anderson, Recent advances using green and red fluorescent protein variants. Appl.Microbiol.Biotechnol., 2007. 77: p. 1-12.
-
3. Niwa, H., K. Yamamura, and J. Miyazaki, Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene, 1991. 108: p. 193-200.
-
4. Mochizuki, N., et al., Spacio-temporal images of growth factor-induced activation of Ras and Rap1. Nature (London), 2001. 411: p. 1065-1068.
-
5. Spector, D.L., R.D. Goldman, and L.A. Leinwand, Cells. A laboratory manual1998: Cold Spring Haarbor Laboratory Press.
-
6. Miyawaki, A., et al., Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature (London), 1997. 388: p. 882-887.
-
7. Kurokawa, K., et al., A pair of FRET-based probes for tyrosine phosphorylation of the CrkII adaptor protein in vivo. Journal of Biological Chemistry, 2001. 276: p. 31305-31310.
-
8. Ohba, Y., et al., Requirement of C3G-dependent Rap1 activation for cell adhesion and embryogenesis. EMBO Journal, 2001. 20: p. 3333-3341.
-
9. Inoue, S. and K.R. Spring, Video Microscopy. 2nd ed1997: Plenum Press.
-
10. Kiyokawa, E., et al., Fluorescence (Forster) resonance energy transfer imaging of oncogene activity in living cells. Cancer Sci., 2006. 97: p. 8-15.
-
11. Jares-Erijman, E.A. and T.M. Jovin, Imaging molecular interactions in living cells by FRET microscopy. Curr.Opin.Chem.Biol., 2006. 10: p. 409-416.
-
12. Wallrabe, H. and A. Periasamy, Imaging protein molecules using FRET and FLIM microscopy. Curr.Opin.Biotechnol., 2005. 16: p. 19-27.
-
13. Li, I.T., E. Pham, and K. Truong, Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics. Biotechnol.Lett., 2006. 28: p. 1971-1982.
-
14. Gaits, F. and K.M. Hahn, Shedding light on cell signaling: interpretation of FRET biosensors. Sci.STKE., 2003. 2003: p. E3.
-
15. Miyawaki, A., Fluorescence imaging of physiological activity in complex systems using GFP-based probes. Curr.Opin.Neurobiol., 2003. 13: p. 591-596.
-
16. Itoh, R.E., et al., Activation of Rac and Cdc42 video-imaged by FRET-based single-molecule probes in the membrane of living cells. Molecular and Cellular Biology, 2002. 22: p. 6582-6591.
-
17. Ohba, Y., K. Kurokawa, and M. Matsuda, Mechanism of the spatio-temporal regulation of Ras and Rap1. EMBO Journal, 2003. 22: p. 859-869.
-
18. Yoshizaki, H., et al., Activity of Rho-family GTPases during cell division as visualized with FRET-based probes. The Journal of Cell Biology, 2003. 162: p. 223-232.
-
19. Kurokawa, K. and M. Matsuda, Localized RhoA activation as a requirement for the induction of membrane ruffling. Molecular Biology of the Cell, 2005. 16: p. 4294-4303.
-
20. Kawase, K., et al., GTP hydrolysis by the Rho family GTPase TC10 promotes exocytic vesicle fusion. Dev.Cell, 2006. 11: p. 411-421.
-
21. Sato, M., et al., Production of PtdInsP3 at endomembranes is triggered by receptor endocytosis. Nat.Cell Biol., 2003. 5: p. 1016-1022.
-
22. Aoki, K., et al., An essential role for the SHIP2-dependent negative feedback loop in neuritogenesis of NGF-stimulated PC12 cells The Journal of Cell Biology, 2007. 177 p. 817-827.
-
23. Takaya, A., et al., R-Ras regulates exocytosis by Rgl2/Rlf-mediated activation of RalA on endosomes Molecular Biology of the Cell, 2007. 18: p. 1850-1860.
-
24. Yoshizaki, H., et al., Akt-PDK1 complex mediates EGF-induced membrane protrusion through Ral activation. Molecular Biology of the Cell, 2007. 18: p. 119-128.
-
25. Terai, K. and M. Matsuda, The amino-terminal B-Raf-specific region mediates calcium-dependent homo- and hetero-dimerization of Raf. EMBO Journal, 2006. 25: p. 3556-3564.
-
26. Terai, K. and M. Matsuda, Ras binding opens c-Raf to expose the docking site for MEK. EMBO Rep., 2005. 6: p. 251-255.
-
27. Fujioka, A., et al., Dynamics of the RAS/ERK map kinase cascade as monitored by fluorescence probes. Journal of Biological Chemistry, 2006. 281: p. 8917-8926.
-
28. Takaya, A., et al., RalA activation at nascent lamellipodia of EGF-stimulated Cos7 cells and migrating MDCK cells. Molecular Biology of the Cell, 2004. 15: p. 2549-2557.
-
29. Kitano, M., et al., Imaging of Rab5 activity identifies essential regulators for phagosome maturation. Nature (London), 2008. 453: p. 241-245.
-
30. Aoki, K., et al., Stable expression of FRET biosensors: a new light in cancer research. Cancer Sci, 2011. 103(4): p. 614-619.
-
31. Komatsu, N., et al., Development of an optimized backbone of FRET biosensors for kinases and GTPases. Molecular Biology of the Cell, 2011. 22(23): p. 4647-4656.
-
32. Yusa, K., et al., Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat.Methods, 2009. 6(5): p. 363-369.
-
33. Kawakami, K., et al., A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev.Cell, 2004. 7(1): p. 133-144.
-
34. Aoki, K. and M. Matsuda, Visualization of small GTPase activity with fluorescence resonance energy transfer-based biosensors. Nature Protocol, 2009. 4: p. 1623-1631.
-
35. Sumiyama, K., K. Kawakami, and K. Yagita, A simple and highly efficient transgenesis method in mice with the Tol2 transposon system and cytoplasmic microinjection. Genomics, 2010. 95(5): p. 306-311.
-
36. Kamioka, Y., et al., Live imaging of protein kinase activities in transgenic mice expressing FRET biosensors. Cell Structure and Function, 2012. 37(1): p. 65-73.